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Stability of solitons in nonlinear fiber couplers with two orthogonal polarizations
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In T. Lakoba, D. Kaup, and B. Malomed@Phys. Rev. E55, 6107 ~1997!#, the stationary solitons of the
nonlinear directional coupler~NLDC! with two polarizations in each core were studied and detailed by means
of the variational method. In the present work, we show how one can analytically determine the stability of all
the various solitons found in that previous work in the limit of large soliton energy. We emphasize that our
analysis isnot based on the variational approximations for the solitons, but rather on their asymptotically exact
forms in the limit of large energy. We find that in all but one case, the stability of those solitons in this model,
which are analogs of any soliton of the NLDC, is the same as that of the corresponding NLDC soliton. We also
discuss how our results, valid for large soliton energies, can be extended to finite values of energy.
@S1063-651X~97!05910-2#

PACS number~s!: 03.40.Kf, 42.65.Tg, 42.81.Gs
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I. INTRODUCTION

Dynamics of solitary waves~solitons, for brevity! in non-
linear optical fibers supporting propagation of two coup
modes has recently been a subject of intensive stu
@1–10#. Such a dynamics is quite rich due to the fact that
the two-component models, there usually exist more t
one stationary soliton state, which can be either stable
unstable depending both on its internal parameters and on
parameters of the model. Thus the issue of linear stability
solitons is crucial for studying their dynamics.

In @1#, stability of solitons in two linearly coupled, single
mode fibers@this model is also referred to in the literature
the nonlinear directional coupler~NLDC!# was studied nu-
merically. The NLDC can have, depending on the value o
certain soliton parameter, up to three types of solitons.~Be-
low we will refer only to ‘‘single-humped’’ solitons, the rea
son being that solitons whose profiles have more than
maximum have always been found to be unstable.! Two of
them, symmetric and antisymmetric, were shown to be sta
only for sufficiently low values of the soliton’s total energ
The solitons of the third type~asymmetric! were found to be
stable for all energy values larger than a certain thresh
Even before paper@1#, Wright et al. @2# had studied the sta
bility of the symmetric and antisymmetric solitons~the
asymmetric soliton was not known at that time! in a more
general model than the NLDC, which also included the n
linear coupling between the modes. In Refs.@3,4#, the
~mostly numerical! studies were concerned with the stabili
of phase-locked solitons in aweaklybirefringent fiber. Such
a fiber is known to have two linear eigenmodes, called f
and slow modes, in accordance with the phase velocity t
have relative to one another. There have been three diffe
types of solitons found in such a model@4#. It was shown in
Refs.@3,4# that solitons of the first type, whose polarizatio
is aligned along the slower eigenmode of the fiber, are
ways ~i.e., for all energies! stable, while the solitons of the
561063-651X/97/56~4!/4791~12!/$10.00
es

n
or
he
f

a

e

le

d.

-

st
y
nt

l-

second type, with polarization aligned along the fast eig
mode, are unstable for almost all values of their energy. T
solitons of the third type, which were found in@4# and which
have nonvanishing components in both fast and slow mo
were shown to be weakly unstable. To conclude this v
brief overview of stability of two-component solitons in op
tical fibers with Kerr nonlinearity, we mention that soliton
in stronglybirefringent fibers were shown, both analytical
@5–7# and numerically@8,9#, to be linearly stable. Neverthe
less, the dynamics of a near-soliton initial pulse in such
system can also be quite nontrivial, since it has recently b
shown that it can have~depending on the value of the pa
rameter of cross-nonlinearity! a long-term internal oscillating
mode@10#.

Recently, we have considered in Ref.@11# the model of
two linearly coupled optical fibers, with each fiber suppo
ing propagation of two orthogonal eigenmodes with d
tinctly different phase velocities. This model is a natural ge
eralization of the NLDC model, mentioned above. On t
other hand, when the fibers in our model are taken far a
from each other, and thus the linear coupling between th
is eliminated, then one obtains the equations of pulse pro
gation in a single, strongly birefringent fiber@12#, which
have also been thoroughly studied~see, e.g.,@10#, and refer-
ences therein!. The equations considered in@11# have the
following form:

iu1,z1
1
2 u1,tt1u1~ uu1u21buv1u2!1ku250,

iv1,z1
1
2 v1,tt1v1~ uv1u21buu1u2!1kv250,

~1.1!

iu2,z1
1
2 u2,tt1u2~ uu2u21buv2u2!1ku150,

iv2,z1
1
2 v2,tt1v2~ uv2u21buu2u2!1kv150,
4791 © 1997 The American Physical Society
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4792 56T. I. LAKOBA AND D. J. KAUP
where we have used the standard undimensionalized
ablesu1,2 andv1,2 for the envelopes of the electric field, an
z and t for the distance along the fiber and the time in t
pulse’s reference frame, respectively~cf., e.g.,@13#!. Follow-
ing @11#, we will refer to Eqs.~1.1! as the ‘‘dual core, dua
polarization’’ model~DCDP!. Let us note that the value o
the linear coupling constantk in Eq. ~1.1! can be scaled to
any nonzero value. In@11#, we only considered the case
when b52/3 andb52, which correspond, respectively, t
propagation of linearly and circularly polarized eigenmod
in each fiber. Any values ofb between 2/3 and 2 will cor-
respond to elliptically polarized eigenmodes@12,13#, and
qualitative predictions about the solitons of Eqs.~1.1! with
2/3,b,2 can be made on the basis of the information o
tained for the limiting cases ofb52/3 andb52.

In @11#, we studied the problem of the existence of s
tionary solitons of the DCDP with the variational metho
We approximated the soliton’s components by Gaussian
functions:

u1,25A1,2e
2a2t2/2eipz, v1,25B1,2e

2b2t2/2eiqz, ~1.2!

and for the stationary amplitudesA1,2, B1,2 and widthsa, b,
we derived a system of nonlinear algebraic equations
which p and q played the role of control parameters. Th
from those equations, we found the boundaries of the reg
of existence for all types of solitons of Eqs.~1.1! and also
numerically calculated the typical profiles of the solitons.

In this work we present the stability analysis for all th
types of solitons found in@11#, in the limit when the soliton’s
energy, defined as

E5Eu1Ev ,
~1.3!

Eu5E
2`

`

~ uu1u21uu2u2!dt, Ev5E
2`

`

~ uv1u21uv2u2!dt,

is large. The principal idea that allows one to perform su
an analysis is the following. One can show that the lim
E@1, k fixed in Eqs.~1.1! is equivalent to the limitE fixed,
k!1, i.e., the small coupling limit. Then by means of th
scaling, one can consider the linear coupling in Eq.~1.1! as a
small perturbation for a two-component soliton in a sing
strongly birefringent fiber. Thus the original problem of th
stability of solitons of the DCDP in the limitE@1, k fixed
is reduced to the problem of stability of solitons in th
strongly birefringent fiber with such a perturbation, f
which the theory can be constructed along the standard li
Let us emphasize that our analysis pertains to theexact,
asymptotic~for E@1) solutions of Eqs.~1.1! andnot to their
variational approximations obtained in@11#. The role of the
variational method was to determine whichparticular con-
figuration, out of all possible ones, of the soliton’s comp
nents@see Eqs.~2.12!–~2.14! below# can be realized in the
limit of E@1.

The remainder of the paper is organized as follows.
Sec. II we will review the results obtained in@11# for the
solitons of the DCDP, as well as some relevant results
earlier models. The details of our stability analysis will
presented in Secs. III and IV, with the generic case be
treated in Sec. III and a degenerate one in Sec. IV. In Se
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we summarize and discuss the results obtained; in particu
we discuss how our stability results can be continued fr
p,q@1 to the finitep andq. We also formulate open ques
tions regarding the stability of solitons of the DCDP.
should be noted that the main results of our analysis w
already announced in@11#.

II. REVIEW OF RESULTS
ON THREE EARLIER MODELS

Since Eqs.~1.1! are a generalization of both the NLDC
model and the model of a single birefringent fiber with tw
orthogonal polarizations, it is natural to start with a review
the well-known results for these two models.

The NLDC is described by two nonlinear-Schro¨dinger
~NLS! type equations:

iu1,z1
1
2 u1,tt1u1uu1u21u250,

~2.1!

iu2,z1
1
2 u2,tt1u2uu2u21u150,

where the linear coupling constant has been set equa
unity. The solitons of Eqs.~2.1! are sought in the form

un~z,t!5eipzun~t!, n51,2 ~2.2!

wherep is a real constant andun(t) are real functions. Let
us note that Eqs.~2.1!, as well as Eqs.~1.1! and Eqs.~2.5!
below, are invariant with respect to the Galilean transform
tion, i.e., if a pairu1,2(t) is a solution of Eqs.~2.1!, then so
is the pair

u1,2
G ~z,t!5u1,2~u!expF iCu1 i S p1

C2

2 D zG , u5t2Cz

~2.3!

with C5const. We will make use of Eq.~2.3! in the next two
sections.

As explained in the Introduction, Eq.~2.1! possesses sym
metric @with u1(t)5u2(t)] and antisymmetric @with
u1(t)52u2(t)] solitons, which exist forp>1 andp>21,
respectively,

u1
~s!~t !5u2

~s!~t !5A2~p21! sech@A2~p21!t#,
~2.4!

u2
~an!~t !5u2

~an!~t !5A2~p11! sech@A2~p11!t#.

In @1# it was shown numerically that the antisymmetric a
symmetric solitons become unstable forp.20.6 and
p.5/3, respectively. Thus these solitons are stable for su
ciently small values of their energy and unstable for lar
ones. On the other hand, the asymmetric soliton, which
created atp55/3 with an already nonzero value of its e
ergy, is unstable~with a very small instability growth rate! in
a narrow region near the point of its creation, and is sta
for p.1.85; in particular, it is stable for large energy. Let
note that an asymmetric soliton withp@1 has almost all of
its energy concentrated in one of the componen
u1(t)/u2(t)5O(p) or u2(t)/u1(t)5O(p).

The equations of pulse propagation in a single core w
two orthogonal polarizations were derived in@12# ~see also
@13#!:
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56 4793STABILITY OF SOLITONS IN NONLINEAR FIBER . . .
iuz1
1
2 utt1u~ uuu21buvu2!50,

~2.5!

ivz1
1
2 vtt1v~ uvu21buuu2!50.

One of the crucial assumptions in the derivation of the
equations was that the birefringent beat length between
two eigenmodes is small compared to the nonlinear and
persive lengths. The values of the nonlinear cross-coup
coefficientb52/3 andb52 correspond to linearly and cir
cularly polarized eigenmodes of the fiber, respectively, a
for a general, elliptically polarized eigenmode, 2/3,b,2.
Below we will refer to Eqs.~2.5! as the vector NLS equa
tions ~VNLS!.

Stationary solutions of the VNLS are sought in the for

u~z,t!5u~t!eipz, v~z,t!5v~t!eiqz, ~2.6!

with u(t) andv(t) being real. When bothu andv are non-
zero, the solution~2.6! is said to form avector soliton, which
we will denote as (u0 ,v0). Vector solitons exist in an ope
angle in the (p,q) plane between the straight lines@14,15#:

qcr
65SA118b21

2 D 62

p. ~2.7!

Outside that domain, there are only solitons of either of
following two forms:

„u00~t!5A2p sechA2pt, v~t!50…, ~2.8!

„u~t!50, v00~t!5A2q sechA2qt…. ~2.9!

Along the bisector p5q, there exists a solution with
uuu5uvu, which can be easily found from Eqs.~2.5! and
~2.6!. For qcr

2,q,qcr
1 and pÞq, the analytical form of the

vector soliton is not known; however,u0(t) andv0(t) were
found numerically in, e.g.,@15#. Through extensive numeri
cal simulations@8#, the vector solitons of the VNLS wer
found to be stable for all values ofp andq.

Let us now briefly summarize the relevant results of R
@11#. If in the DCDP one imposes the following relatio
between theparallel components in the cores:

u15mu2 , v15nv2 , m,n561, ~2.10!

then Eqs.~1.1! reduce to equations of the form~2.5!, where
the control parametersp and q in Eq. ~2.6! should be re-
placed by (p2m) and (q2n), respectively. Solitons of the
DCDP which satisfy the reduction~2.10! were called in@11#
core-symmetric. These core-symmetric solitons are the an
logs of the symmetric and antisymmetric solitons~2.4! of
the NLDC. Now, to characterize the relation between
orthogonalcomponents in the same core, it is convenient
introduce a new parameterg:

~q2n!5g~p2m!. ~2.11!

For the core-symmetric solitons,g is the analog of the ratio
q/p for the VNLS ~2.5!.

In @11# we also found numerically the variational approx
mations for the solitons of the DCDP which do not poss
symmetry ~2.10!. Such solitons were called in@11# core-
e
he
s-
g

d

e

f.

-

e
o

s

asymmetric. An analog of the core-asymmetric soliton
the asymmetric soliton of the NLDC.

In Figs. 1 and 2 we plotted the regions of existence of
of the various types of solitons of the DCDP, which we
obtained in@11# with the variational method. Outside th
shaded areas in these figures, there only exist solitons
either bothu or both v components vanishing; we will no
consider here such solutions because they simply reduc
the known solitons of the two-component NLDC. The cor
symmetric solitons exist inside the open angles bounded
the straight lines. The dashed lines denote thebifurcation
curves, at which the core-asymmetric solitons are created
a result of a bifurcation from the core-symmetric ones. T
dash-dotted lines show where two of the components~either
u1,2 or v1,2) of the core-asymmetric soliton vanish; thus

FIG. 1. Regions of existence of solutions of Eqs.~3.3! with
b52/3 in the (p,q) plane. ~a! and ~b! correspond to the case
(A1A2.0, B1B2.0) and (A1A2.0, B1B2,0), respectively; a fig-
ure for the case (A1A2,0, B1B2,0) is not shown. Note that in~b!,
A15A2 and B152B2 along the bisectorp5q only for the core-
symmetric soliton.
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FIG. 2. Same as in Fig. 1, butb52. Note that in~c!, A152A2 andB152B2 along the bisectorp5q only for the core-symmetric and
the core-asymmetric AS2 solitons.
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these lines the solutions reduce to the asymmetric soliton
the NLDC. We will now give specific comments about ea
type of the core-asymmetric solitons, depicted in Figs. 1
2.

b52/3;u1u2.0, v1v2.0 [Fig.1(a)]. The first type of
core-asymmetric solitons exists in the open region boun
by the two dash-dotted curves and the lower dashed curv
the next two sections we will need the asymptotic form
the solitons for large values of their energy, i.e., forp,q→`.
In this limit, one has for the first core-asymmetric soliton
Fig. 1~a!

~u1 ,v1!→~u0 ,v0!, ~u2 ,v2!→~0,0!, ~2.12!

where (u0 ,v0) is the vector soliton of the VNLS.~The asym-
metric solitons always come in pairs, the two solutions in
pair differing by interchanging the subindices 1 and 2.! It is
worth noting that this solution is a four-component analog
of

d

d
In
f

a

f

the asymmetric soliton of the NLDC, since for all suffi
ciently largep andq, its components satisfy the relation~cf.
@11#!

u1

u2
'

v1

v2
. ~2.13!

The second core-asymmetric soliton, which exists ins
the region bounded by the upper dashed curve, has
asymptotic form

~u1 ,v1!→~u0 ,v0!, ~u2 ,v2!→~u00,0!, ~2.128!

whereu00 andv00 were defined in Eqs.~2.8! and ~2.9!. We
also remind the reader that a core-symmetric soliton w
some value ofg @see Eq.~2.11!# has the same form as th
vector soliton (u0 ,v0) with the ratioq/p equal to the same
valueg.
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b52/3;u1u2.0, v1v2,0 [Fig. 1(b)]. The core-
asymmetric solitons exist in the region bounded by
dashed and dash-dotted lines; their asymptotic form
(p,q)→` is

~u1 ,v1!→~u0 ,v0!, ~u2 ,v2!→~0,2v00!. ~2.14!

b52/3;u1u2,0, v1v2,0. Only the core-symmetric soli
tons exist inside the open angle bounded by the straight l
~2.7!, with p andq in that equation being replaced by (p11)
and (q11), respectively.

b52;u1u2.0, v1v2.0 [Fig. 2(a)]. The only type of
core-asymmetric solitons exists in the region bounded by
dashed and dash-dotted lines; its asymptotic form is given
Eq. ~2.12!. The relation~2.13! is also valid in this case.

b52;u1u2.0, v1v2,0 [Fig. 2(b)]. The core-asymmetric
solitons which exist in the narrow strip between the das
line and the upper solid line have a very smallv component
and thus are very similar to the two-component, asymme
solitons of the NLDC. The other type of core-asymmet
solitons exists in the region bounded by the upper solid
and the dash-dotted line; its asymptotic form is

~u1 ,v1!→~u0 ,v0!, ~u2 ,v2!→~u00,0!. ~2.15!

b52;u1u2,0, v1v2,0 [Fig. 2(c)]. There are three differ-
ent types of asymmetric solitons, which are denoted as A
AS2, and AS3. Their regions of existence are marked in F
2~c!, and their asymptotic forms are the following:

~u1 ,v1!→~u00,0!, ~u2 ,v2!→~2u0 ,2v0! ~AS1!,
~2.16a!

~u1 ,v1!→~u00,0!, ~u2 ,v2!→~0,2v00! ~AS2!,
~2.16b!

~u1 ,v1!→~u0 ,v0!, ~u2 ,v2!→~0,2v00! ~AS3!.
~2.16c!

To conclude this section, let us note that the lim
p,q→`, in which we will study the stability of the soliton
of the DCDP, can only be taken formally, because, stric
speaking, it is inconsistent with the~standard! assumption of
the slowly varying amplitudes, under which that model w
derived. Moreover, since in this limit one also hasE→`
@see Eq.~1.3!#, then the structure of the linear eigenmodes
the fiber may also change due to the strong nonlinear cor
tions, which will also invalidate Eqs.~1.1!. However, we will
now show that for realistic pulse and fiber parameters, th
is a range ofp andq where Eqs.~1.1! are still valid, and yet
the results of our analysis are applicable. Thus we will de
onstrate that taking the limit of largep andq, besides being
a convenient mathematical tool, also corresponds to ope
ing in a physically relevant range of parameters.

Following @16#, we assume the following parameters f
the coupler and the pulse: separation between c
l 545 mm, diameter of a cored58 mm, difference be-
tween refractive indices of the core and the cladd
Dn5531023, carrier wavelengthl;1 mm, pulse width
tp51 ps. Then in Eqs.~1.1! k50.75 andz is normalized so
as to have the coupling lengthl couple'200 m @16#. Then the
requirement that the nonlinear and dispersive lengths b
the same order, i.e.,l sol'200 m, necessitates using the pul
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power P'50 W and a relatively high-dispersion fiber wit
D'100 ps/nm km~see, e.g.,@17#!. With these parameters,
solution of Eqs.~1.1! with p5q51 will correspond to an
approximately 1-ps-long pulse. Now, we expect that our s
bility results will be valid in the regions in the (p,q) plane
located beyond all of the bifurcation curves~cf. Figs. 1 and
2!. †Indeed, an occurrence of a pitchfork bifurcation to
solution usually indicates the appearance in the spectrum
the corresponding linearized equation of an unstable m
~see, e.g.,@1#!, with the instability of that mode being purel
exponential rather than oscillatory. All the unstable mod
that we find below are of this type, since the correspond
eigenvalues are purely imaginary.‡ Then, as it is seen from
Figs. 1 and 2, takingp;q;10 is a good approximation to
the asymptotic limitp,q@1. On the other hand, the puls
width scales as 1/Ap and the pulse energy scales asAp ~see
next section!; consequently, the nonlinear and dispersi
lengths both decrease as 1/p. For p510, this would yield
tp'300 fs, E'150 W, andl sol'20 m. Clearly, for such
pulse widths, the approximation of the slowly varying am
plitudes still holds quite well, and the pulse intensity is al
sufficiently low to neglect any change in the structure of t
linear eigenmodes of the fiber due to nonlinear effects.

Thus, in the following two sections, we will stay withi
the mathematical model given by Eqs.~1.1! and develop the
stability analysis for its solitons in the limit ofp,q→`.
Then, in the concluding section, we will extrapolate our
sults to the region of large but finitep andq.

III. STABILITY OF SOLITONS OF THE DCDP:
GENERIC CASE

The idea of investigating stability of solitons of the DCD
with p,q@1 is simple. First, notice that such solitons ha
large amplitudes and small widths, which can be seen fr
the special solutions presented in Sec. II. Next, one can
form the following scaling transformation in Eqs.~1.1!:

u5 ũ /A«, v5 ṽ /A«, t5 t̃ A«, z5 z̃«. ~3.1!

Let so introduced amplitudesũ and ṽ , as well as the soli-
ton’s width and dispersion length expressed in terms of
rescaled coordinatest̃ and z̃ , respectively, have magnitude
O(1). Then taking the limit«!1 in Eq.~3.1! corresponds to
the limit p,q@1 in terms of the original variables.@In fact,
the propagation constants are rescaled as follows:p5 p̃/«
and q5 q̃ /«, where p̃, q̃5O(1).# On the other hand, the
tilded quantities satisfy Eqs.~1.1! with k̃5«k. Since using
the above scaling transformation, one can always resca
nonzerok in Eqs. ~1.1! to unity, we will write in what fol-
lows k̃5« without restricting the generality. Below we wil
also omit the tilde sign. Thus we have shown that the lim
p,q@1, k fixed in Eqs.~1.1! is equivalent to the limitp,q
fixed,k!1, which is the limit of small coupling between th
cores. Then the problem of stability of solitons of the DCD
in the former limit is reduced to the problem of stability o
solitons in a single, strongly birefringent fiber, with the pe
turbation being the linear coupling to the other fiber.

If one formally setsk[«50 in Eqs.~1.1!, then the re-
sulting equations will describe twouncoupledcores, with
two orthogonal polarizations in each. The equation for ea
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core is the VNLS~2.5!. A vector soliton of the VNLS is
invariant with respect to the transformation

u~t!→u~t2t0!eiwu, v~t!→v~t2t0!eiwv, ~3.2!

wheret0, wu , andwv are arbitrary constants. Therefore th
vector soliton~2.6! has three Goldstone modes which cor
spond to the infinitesimal shifts oft0, wu , and wv . Alto-
gether, there are six Goldstone modes for two independ
vector solitons in the two uncoupled cores. Such modes
always neutrally stable. Now, when one couples the t
cores by allowing the linear coupling constant« to be non-
zero, there remain only three Goldstone modes~one corre-
sponds to the shift of the common center of all the fo
components, and the other two to the shifts of the phase
the u1,2 and v1,2 components!. The other three ‘‘formerly
Goldstone’’ modes need no longer be neutrally stable, a
in general, they will become modes of the discrete spect
with nonzero eigenvalues. Then for«!1, one can find these
eigenvalues by means of a perturbation theory, and thus
tablish the stability or instability of the soliton. We will now
give the details of these calculations.

Let

„u10~t!eipz,v10~t!eiqz,u20~t!eipz,v20~t!eiqz
…

T, ~3.3!

where the superscriptT indicates the matrix transpose, be
four-component vector soliton of Eqs.~1.1! with «50. Note
that even though for«50, the vector soliton in the first cor
is not coupled to the vector soliton in the other core, we h
required that the propagation constants of the parallel c
ponents of both solitons be equal, because this is the solu
of interest for«→10. When 0,«!1, then we can expand
the profile of the stationary soliton by

un~t!5un0~t!1«un1~t!1•••,

vn~t!5vn0~t!1«vn1~t!1•••, n51,2 . ~3.4!

Let us introduce the eight-component vectors
c-
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wm~t!5~u1m ,u1m* ,v1m ,v1m* ,u2m ,u2m* ,v2m ,v2m* !T,

m50,1 .

@In fact,u10(t), u11(t), etc., are real. We only introduce the
complex conjugates here for notational convenience la
on.# In order to make the ensuing formulas more compa
we will use the notations

~ IxW1 ,IxW2 ,IxW3 ,IxW4!T for ~x1 ,x1 ,x2 ,x2 ,x3 ,x3 ,x4 ,x4!T

and

~s3xW1 ,s3xW2 ,s3xW3 ,s3xW4!T

for ~x1 ,2x1 ,x2 ,2x2 ,x3 ,2x3 ,x4 ,2x4!T.

Above, I is the 232 identity matrix,xW j5(xj ,xj )
T, and the

Pauli matrices are

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D .

Thus, for instance, if all of the components of the vectorwm
(m50,1) are real, then

wm5~ IuW 1m ,IvW 1m ,IuW 2m ,IvW 2m!T, m50,1 .

Also, we will use the notationŝ3 for a block-diagonal matrix
diag(s3 ,s3 ,s3 ,s3).

Substituting the expansion~3.4! into Eqs. ~1.1! with
k5«, one finds that vectorw1 satisfies the following equa
tion:

Ł0w1[S L1 0

0 L2
Dw15R@w0#, ~3.5!

where
Ln5S S 1

2
]t

22pDs3 0

0 S 1

2
]t

22qDs3

D 1S ~2un0
2 1bvn0

2 !s31un0
2 is2 bun0vn0~s31 is2!

bun0vn0~s31 is2! ~2vn0
2 1bun0

2 !s31vn0
2 is2

D , n51,2

~3.6a!
ry
-

he
and

R@~y1 ,y2 ,y3 ,y4!T#[2~y3s3 ,y4s3 ,y1s3 ,y2s3!T.
~3.6b!

In Eq. ~3.6b!, y1, etc. are arbitrary two-component row ve
tors. Note that the operatorŁ0 in the left hand side of Eq
~3.5! is the linearized operator of Eqs.~1.1! on the back-
ground of the soliton~3.3!, which is a solution of Eqs.~1.1!
with k50. The operatorR in the right hand side of Eq.~3.5!
arises from the terms describing the small linear coupl
 g

between the two cores. As will be shown below@after Eq.
~3.20!#, the right hand side of Eq.~3.5! is orthogonal to the
zero modes of the operatorŁ0, so that the solvability condi-
tion for Eq. ~3.5! is always satisfied. Then, the stationa
correctionsun1 ,vn1 , n51,2 to the soliton will be exponen
tially decaying functions ofutu. Equation~3.5! is, in general,
quite complex; however, we willnot need its solution in
explicit form.

When none of the components of soliton~3.3! are zero,
then for «50, that soliton has six Goldstone modes of t
following form:
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f0
~1,g!5S IuW 10,t

IvW 10,t

gIuW 20,t

gIvW 20,t

D , f0
~2,g!5S s3iuW 10

0W

gs3iuW 20

0W

D ,

f0
~3,g!5S 0W

s3ivW 10

0W

gs3ivW 20

D , ~3.7!

where g561. The modes withg511 correspond to the
equal shifts of the parameterst0, wu, andwv , defined in Eq.
~3.2!, for the uncoupled solitons in the two cores, where
the modes withg521 correspond to the equal in magnitud
but oppositely directed such shifts. All these Goldsto
modes satisfy the equation

Ł0f0
~ j ,g!50, j 51,2,3 . ~3.8!

Thus the eigenvaluel of the operatorŁ0 will have multiplic-
ity of 12 for l50, since for each of the above six Goldsto
modes, the spectrum of the operatorŁ0 is doubly degenerate
Indeed, to each of these six modes, there corresponds
called associate mode,fD

( j ,g) ~also called a derivative state
cf. @18–20#!, which satisfies

a jŁ0fD
~ j ,g!5f0

~ j ,g! , ~3.9a!

where the normalization constantsa1,2,3 have been chosen t
be

a152 i , a25a35 i . ~3.9b!

The explicit form of the associate modes is the followi
~cf., e.g.,@20#!:

fD
~1,g!5S s3uW 10,C

s3vW 10,C

gs3uW 20,C

gs3vW 20,C

D , fD
~2,g!5S IuW 10,p

IvW 10,p

gIuW 20,p

gIvW 20,p

D ,

fD
~3,g!5S IuW 10,q

IvW 10,q

gIuW 20,q

gIvW 20,q

D , ~3.10!

where
s

e

so-

u10,C5
]u10

G

]C
U

u5const
C50

, u10,p5
]u10

]p U
q5const

,

u10,q5
]u10

]q U
p5const

, etc.

Here the solitonu10
G is obtained fromu10 by the Galilean

transformation~2.3!, so thatC is the soliton velocity. Ac-
cording to this definition, it is easy to obtain that

u10,C5 i
t

2
u10, etc. ~3.11!

However, no such relation can be given foru10,p , u10,q , etc.,
since the explicit dependence of the components of the v
tor soliton ~3.3! on p andq is not known.

Now, for 0,«!1, the three modesf0
( j ,11) ~i.e., for

g511) continue to remain as Goldstone modes. The ot
three~we remind the reader that we consider the case w
none of the components of the soliton~3.3! are zero; the case
when one or more of those components vanishes will
commented on later! modes, withg521, may acquire non-
zero eigenvalues as modes of the discrete spectrum of
linearized Eqs.~1.1!. Since eachf0

( j ,21) is doubly degener-
ate, as explained above, then for«Þ0, each must, in genera
split and give rise to two modes of the discrete spectrum

To determine how the eigenvalues of these new mo
shift, one needs to linearize Eqs.~1.1! on the background of
the soliton~3.4!. Thus we let

u1,2~t,z!5@u1,2~t!1U1,2~t,z!#eipz,

v1,2~t,z!5@v1,2~t!1V1,2~t,z!#eiqz, ~3.12!

whereuU1,2u!uu1,2u anduV1,2u!uv1,2u, and the magnitudes o
U1,2 andV1,2 arenot related to the value of«. Note that we
have performedtwo expansions. The first expansion, give
by Eqs.~3.4! and ~3.5!, defined how the stationary form o
the soliton shifted for«Þ0. In the second expansion, Eq
~3.12!, we considerarbitrary ~but small! perturbations of the
profile of the soliton~3.4!.

For the eight-component vector

W1~t,z![~U1 ,U1* ,V1 ,V1* ,U2 ,U2* ,V2 ,V2* !T

we obtain the following equation:

~ i ]z1Ł0!W15«$R@W1#2~DŁ0!W1%, ~3.13!

where we have dropped terms of orderO(«2) and higher. In
the last equation, the notation (DŁ0) is the following:

~DŁ0![S DL1 0

0 DL2
D 5Ł0@~u1 ,v1 ,u2 ,v2!#

2Ł0@~u10,v10,u20,v20!#, ~3.14a!

where the notationŁ0@(a,b,c,d)# means thata, b, c, and
d are substituted foru10, v10, u20, andv20, respectively,
in Eq. ~3.6a!. One obtains
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DLn5S 2~2un0un11bvn0vn1!s312un0un1is2 b~un0vn11un1vn0!~s31 is2!

b~un0vn11un1vn0!~s31 is2! 2~2vn0vn11bun0un1!s312vn0vn1is2
D , ~3.14b!
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wheren51, 2, andu11, etc. can be found from Eq.~3.5!. It
is seen from Eq.~3.13! that the introduction of a small linea
coupling between two, originally uncoupled, cores can aff
the stability of the solitons in such a system in two differe
ways. First, the coupling terms alter the form of the cor
sponding linearized equations, which is accounted for by
first term in the right hand side of Eq.~3.13!. Second, the
stationary solitons in the presence of a small coupling
different from those with zero coupling, cf. Eqs.~3.5! and
~3.4!. Therefore linearization now needs to be performed
the background of a soliton that is slightly different from th
in the case of zero coupling. This leads to the occurrenc
the second term in the right hand side of Eq.~3.13!.

To solve Eq.~3.13!, we use the separation of variables

W1~t,z!5f~t!eilz,

and obtain:

Ł0f5lf1«$R@f#2~DŁ0!f%. ~3.15!

Thus, if there exists at least one modef0
( j ,21) which has an

eigenvalue with Iml,0 for 0,«!1, then the correspond
ing soliton ~3.4! is linearly unstable.

To solve Eq. ~3.15! by successive approximations fo
0,«!1, we assume the following expansions:

f~ j ,g!5f0
~ j ,g!1A«f1

~ j ,g!1«f2
~ j ,g!1•••,

l~ j ,g!5A«l1
~ j ,g!1«l2

~ j ,g!1•••. ~3.16!

The expansion in powers ofA« rather than« is being per-
formed because each of the Goldstone modes~3.7! is doubly
degenerate. Substituting Eq.~3.16! into Eq. ~3.15! and using
Eq. ~3.8!, one obtains in the first order:

Ł0f1
~ j ,g!5l1

~ j ,g!f0
~ j ,g! . ~3.17!

From Eq. ~3.9!, a particular solution of the last equa
tion is

f1
~ j ,g!5l1

~ j ,g!a jfD
~ j ,g! . ~3.18!

In the next order, one obtains from Eqs.~3.15!, ~3.16!, and
~3.18!

Ł0f2
~ j ,g!5~l1

~ j ,g!!2a jfD
~ j ,g!1l2

~ j ,g!f0
~ j ,g!1$R@f0

~ j ,g!#

2~DŁ0!f0
~ j ,g!%. ~3.19!

Now multiply Eq.~3.19! by (f0
( j ,g))Tŝ3 on the left, integrate

over t, and use the fact thatŝ3Ł0 is a Hermitian operator
This gives the following solvability condition for Eq.~3.19!:
t
t
-
e

e

n
t
of

~l1
~ j ,g!!2a j^f0

~ j ,g!uŝ3ufD
~ j ,g!&5^f0

~ j ,g!uŝ3~DŁ0!uf0
~ j ,g!&

2^f0
~ j ,g!uŝ3uR@f0

~ j ,g!#&,
~3.20!

where for any eight-component vector functionsf (t) and
h(t),

^ f uŝ3uh&[E
2`

`

f T~t!ŝ3h~t!dt.

Similarly, one establishes that the solvability condition f
Eq. ~3.5!, which determines the stationary first-order corre
tions un1 ,vn1 , n51,2 @see Eq.~3.4!#, always holds.

Now note that the term in angle brackets in the left ha
side of Eq.~3.20! is independent ofg, and so is the first term
in the right hand side due to the block-diagonal structure
(DŁ0) @see Eq.~3.14a!#, while the second term in the righ
hand side is proportional tog, see Eqs.~3.7! and ~3.6b!.
Furthermore, we know that the modes withg511 remain
the Goldstone modes for«Þ0, and therefore their eigenva
ues must not shift from zero, for all orders of«. In particular,
l1

( j ,11)50 for j 51,2,3. Then from Eq.~3.20! it follows that
the second term in the right hand side is exactly cancelled
the first one wheng511, and so forg521, the right hand
side must be twice the second term. Thus Eq.~3.20! for
g521 can be rewritten as follows:

~l1
~ j ,21!!2a j^f0

~ j ,21!uŝ3ufD
~ j ,21!&

522 ^f0
~ j ,21!uŝ3uR@f0

~ j ,21!#&. ~3.21!

Substituting Eqs.~3.9b!, ~3.10!, and ~3.11! into Eqs.~3.21!,
one obtains equations which, in the first approximation,
termine the eigenvalues of the modes of the discrete s
trum:

~l1
~1,21!!2~Eu1Ev!516E

2`

`

~u10,tu20,t1v10,tv20,t!dt,

~3.22a!

~l1
~2,21!!2

]Eu

]p U
q5const

528E
2`

`

u10u20dt, ~3.22b!

~l1
~3,21!!2

]Ev

]q U
p5const

528E
2`

`

v10v20dt, ~3.22c!

whereEu andEv were defined in Eq.~1.3!. We will present
the conclusions regarding the stability of the solitons, wh
follow from Eqs.~3.22!, in Sec. V.

Let us remark again that Eqs.~3.22! are valid only when
u10u20Þ0 andv10v20Þ0, since otherwise the total numbe
of Goldstone modes will be less than six. Indeed, if, f
example,u10u2050 and v10v20Þ0, thenf0

(2,21)[f0
(2,11) ,

and alsofD
(2,21)[fD

(2,11) @to see that the latter relation i
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true, one needs to notice that whenu0[0, thenv0, p[0 in
Eqs.~2.5!#. Thus in this case one has five Goldstone mo
instead of six in Eq.~3.7!. However, we can still use Eqs
~3.22! in this case~as well as in the case whenu10u20Þ0 and
v10v2050) to determine stability, as long as at least one
the eigenvalues has an imaginary part, in which case
corresponding soliton is unstable.

Now, whenu10u2050 andv10v2050, Eqs.~3.22! do not
yield information regarding the stability of the solitons.
this case, one needs to consider two different possibilit
First, whenu205v2050 andu10Þ0Þv10, Eqs. ~3.7! yield
only three Goldstone modes. Since for 0,«!1, these
modes continue to be Goldstone modes, then no modes
nonzero eigenvalues exist in the discrete spectrum, an
the background soliton is stable. This situation is realized
the first core-asymmetric soliton in Fig. 1~a! and the core-
asymmetric soliton in Fig. 2~a! @see Eq.~2.12!#. Thus those
solitons, which are the four-component analogs of the as
metric soliton of the NLDC~2.1!, are stable forp,q@1. The
second possibility is whenu205v1050 and u10Þ0Þv20,
which is realized for the AS2 soliton in Fig. 2~c!. In this
case, the modef0

(1,21) , which corresponds to the opposite
directed shifts of the centers of the solitons in the two u
coupled cores, is different from the modef0

(1,11) , corre-
sponding to the similarly directed shifts. Therefore Eqs.~3.7!
yield four Goldstone modes, of which one,f0

(1,21) , may
acquire a nonzero eigenvalue for«Þ0. To find that eigen-
value, one needs to use an expansion different from E
~3.16!. We do this in the next section.

IV. PROOF THAT THE AS2 SOLITON
IN FIG. 2 „c… IS UNSTABLE

As was explained at the end of the preceding section
the case of the AS2 soliton in Fig. 2~c!, the only ‘‘formerly
Goldstone’’ mode which may acquire a nonzero eigenva
for «Þ0 is f0

(1,21) in Eq. ~3.7!. From Eqs.~3.7!, ~3.10!, and
~2.16b! one finds its explicit form, as well as that of th
associated mode:

f0
~1,g!5S IuW 00,t

0W

0W

gIvW 00,t

D , fD
~1,g!5S s3uW 00,C

0W

0W

gs3vW 00,C

D , ~4.1!

with g521. The mode withg511 continues to be a Gold
stone mode even for«Þ0. We will not be referring to the
modesf0

(2,g) andf0
(3,g) in this section, and therefore belo

we will refer to the modesf0
(1,g) simply as tof0

(g) . Note that
the relative sign of the nonzerou andv components of the
soliton is unimportant, and so we chose both these com
nents to be of the same sign.

Instead of Eq.~3.16!, one should now use another expa
sion for the eigenmode and its eigenvalue:

f~g!5f0
~g!1«f1

~g!1«2f2
~g!1•••,

l~g!5«l1
~g!1«2l2

~g!1••• . ~4.2!
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One also has to take into account the second-order correc
terms to the stationary solution:

un~t!5un0~t!1«un1~t!1«2un2~t!1•••,
~4.3!

vn~t!5vn0~t!1«vn1~t!1«2vn2~t!1••• ,

for n51,2; recall that the above solutions are real. From E
~3.5!, ~3.6!, and~2.16b! one finds that

@~ 1
2 ]t

22q!1bu00
2 #v1152v00,

~4.4a!

@~ 1
2 ]t

22p!1bv00
2 #u2152u00,

u115v2150 . ~4.4b!

One can also show that the second-order correction te
which satisfy an equation similar to Eq.~3.5!, satisfy the
relations

u12Þ0Þv22, v12505u22, ~4.4c!

but we will not need the explicit form of those corrections
Now, up to the orderO(«2), the equation for the eigen

mode is

Ł0f5lf1«$R@f#2~D1Ł0!f%2«2~D2Ł0!f, ~4.5!

where (D1Ł0) is the same quantity which was defined in E
~3.14!, and (D2Ł0) is the second-order correction to the o
eratorŁ0, which is due both to the second-order terms of t
expansion~4.3! and the quadratic combinations of the firs
order terms of that expansion. Both (D1Ł0) and (D2Ł0) have
the block-diagonal structure shown in Eq.~3.14a!; however,
within the nonzero 434 blocks, the structure of these ma
trices is different, namely,

D1L15S 0 bu00v11~s31 is2!

bu00v11~s31 is2! 0 D ,

~4.6a!

D1L25S 0 bv00u21~s31 is2!

bv00u21~s31 is2! 0 D ,

and

D2Ln5S * 0

0 * D , n51,2 ~4.6b!

where the asterisk stands for a nonzero 232 block, whose
explicit form we will not need. Expressions in Eq.~4.6! were
obtained with the use of Eqs.~3.6a!, ~2.16b!, and~4.4!.

Proceeding with the solution of Eq.~4.5!, one obtains in
the first order

Ł0f1
~g!5l1

~g!f0
~g!1R@f0

~g!#2~D1Ł0!f0
~g! . ~4.7!

Solvability condition for this equation is satisfied. Indeed,
it were not, then the expansion for the eigenvalue wo
have been given by Eq.~3.16! rather than Eq.~4.2!, and the
latter is not the case, since then one of Eqs.~3.22! would
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have provided conclusive information about the stability
the AS2 soliton in the first order. Now, a particular soluti
to Eq. ~4.7! has the form

f1
~g!5al1

~g!fD
~g!1fR

~g!2fD
~g! , ~4.8!

wherea[a152 i @see Eq.~3.9b!# and

Ł0fR
~g!5R@f0

~g!#, Ł0fD
~g!5~D1Ł0!f0

~g! . ~4.9!

Using Eqs.~3.5!, ~2.16b!, ~4.1!, and~4.6a!, one finds that

fR
~g!52S 0W

gIcW 1

IcW 2

0W

D , fD
~g!5S 0W

IcW 3

gIcW 4

0W

D , ~4.10!

wherecn , n51, . . . ,4, aresolutions of the following equa
tions:
it.
ch

f
a

e
li-
f @~ 1
2 ]t

22q!1bu00
2 #c15v00,t , ~4.11a!

@~ 1
2 ]t

22p!1bv00
2 #c25u00,t , ~4.11b!

@~ 1
2 ]t

22q!1bu00
2 #c35b~u00

2 !tv11, ~4.11c!

@~ 1
2 ]t

22p!1bv00
2 #c45b~v00

2 !tu21. ~4.11d!

In the next order, one finds from Eq.~4.5!

Ł0f2
~g!5l2

~g!f0
~g!1l1

~g!f1
~g!1R@f1

~g!#2~D1Ł0!f1
~g!

2~D2Ł0!f0
~g! . ~4.12!

Using Eqs.~4.1!, ~4.8!, ~4.10!, ~3.6b!, and ~4.6!, one can
show that only the following terms will contribute to th
solvability condition of Eq.~4.12!:
~l1
~g!!2a^f0

~g!uŝ3ufD
~g!&5^f0

~g!uŝ3u$R@fD
~g!#1~D1Ł0!fR

~g!%&2^f0
~g!uŝ3u$R@fR

~g!#1~D1Ł0!fD
~g!2~D2Ł0!f0

~g!%&.
~4.13!
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One can verify, using Eqs.~4.1!, ~4.10!, ~3.6b!, and ~3.14!,
that the first term in the right hand side of Eq.~4.13! is
proportional tog, while the second one is independent of
Since for g511, the two terms must exactly cancel ea
other ~cf. Sec. III!, then for g521, the right hand side is
twice the first term. Then, using Eqs.~4.10! and ~4.6a!, and
also ~4.1! and ~3.11!, one obtains

~l1
~21!!2~Eu1Ev!524E

2`

`

$@c4u00,t1b~v00
2 !tu21c2#

1@c3v00,t1b~u00
2 !tv11c1#%dt

528E
2`

`

@b~v00
2 !tu21c2

1b~u00
2 !tv11c1#dt, ~4.14!

where in deriving the last line, we have used Eqs.~4.4a! and
~4.11!.

We numerically solved Eqs.~4.4a!, ~4.11a!, and ~4.11b!
for various values of the ratio (q/p) in the interval (gcr

2 ,gcr
1)

@cf. Eqs.~2.11!, ~2.7!# and found that the right hand side o
Eq. ~4.14! was always negative. This means th
(l1

(21))2,0, and so the AS2 soliton in Fig. 2~c! is unstable
in the limit of largep andq.

V. DISCUSSION OF THE RESULTS AND CONCLUSIONS

In this section, we will first use Eqs.~3.22! to derive the
stability properties of the solitons of the DCDP. Then w
will formulate open problems regarding the stability of so
tons of the DCDP.
t

b52/3,u1u2.0, v1v2.0. As it was shown at the end o
Sec. III, the first core-asymmetric soliton in Fig. 1~a! is
stable forp,q@1. In analogy with the results for Eqs.~2.1!,
we surmise that that soliton is stable either immediately
shortly after the first bifurcation curve in Fig. 1~a!. The core-
symmetric soliton and the second core-asymmetric sol
@see Eq.~2.128!# are unstable since for them (l1

(2,21))2,0 in
Eqs.~3.22! @for the core-symmetric soliton, (l1

(3,21))2,0 as
well#. In arriving at this conclusion, we have used the fa
that for all the types of solitons in the case consider
]Eu /]p uq5const.0, which can be seen from Fig. 1~a! and
Eq. ~2.7! with b,1. We note that the instability of the core
symmetric soliton in this case is analogous to that of
symmetric solution of the NLDC, and so we surmise that
finite p andq, the core-symmetric soliton is stable before t
first bifurcation curve and unstable beyond it. Then the s
ond core-asymmetric soliton must be unstable for allp andq
since it comes into existence as a result of a pitchfork bif
cation from the already unstable core-symmetric soliton.

b52/3, u1u2.0, v1v2,0. For the core-symmetric soli
ton, (l1

(2,21))2,0, and also for the core-asymmetric solito
(l1

(1,21))2,0 @see Eq.~2.14!#. Thus both types of solitons in
this case are linearly unstable for largep andq. However, in
analogy with the results for the NLDC, the core-symmet
soliton with sufficiently low energy may be stable.

b52/3, u1u2,0, v1v2,0. The core-symmetric soli-
ton in this case has (l1

(1,21))2,0, and thus it is unstable
This is analogous to the instability of the antisymmetric so
ton of the NLDC.

b52 u1u2.0, v1v2.0. As was shown at the end o
Sec. III, the core-asymmetric soliton is stable, similar to t
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case whenb52/3. Now, unlike that latter case, here one h
for the core-symmetric soliton

]Eu

]p U
q5const

,0,
]Ev

]q U
p5const

,0 . ~5.1!

This can be seen from Fig. 2~a! and Eq.~2.7! with b.1.
Therefore all the eigenvalues for the core-symmetric soli
are real in the first approximation. However, that soluti
still has a chance to be unstable, if it turns out that in the n
approximation, at least one of thel2

( j ,21)’s is imaginary.
However, in that case the rate of instability, if one returns
the initial evolution variablez @see Eq.~3.1!#, will have the
order of magnitudeO(1), while in all the cases considere
so far it had the order of magnitudeO(1/A«) @cf. Eq.~3.16!#.

b52, u1u2.0, v1v2,0. For the core-symmetric soliton
Eqs. ~5.1! hold, and therefore (l1

(3,21))2,0 for this type of
soliton. For the core-asymmetric soliton which exists on
right hand side of the dash-dotted curve in Fig. 2~b!, we
found numerically that]Eu /]p uq5const.0, and so for this
type of soliton, (l1

(2,21))2,0. Thus both of the above type
of solitons are unstable forp,q@1. However, by the same
argument as in the case withb52/3, the core-symmetric
soliton with a sufficiently low energy may still be stable.

Let us note that Eqs.~3.22! cannot be used for the stabi
ity analysis of the core-asymmetric soliton which exists
the narrow strip near the upper boundary in Fig. 2~b!, be-
cause that strip has zero width in the limitp,q→` ~cf. Sec.
II !. However, we believe that this type of soliton is stab
because its shape must be very close to that of the t
component asymmetric soliton of the NLDC, which
known to be stable~see Sec. II!.

b52, u1u2,0, v1v2,0. For the core-symmetric soliton
all the three eigenvalues given by Eq.~3.20! are imaginary,
while for AS1 and AS3 solitons, (l1

(1,21))2,0, see Eqs.
~2.16a! and ~2.16c!. Thus these three types of solitons a
unstable forp,q@1, with their instability growth rate being
of the order (1/A«). As we showed in Sec. IV, the AS
soliton is also unstable; however, its instability growth rate
of the orderO(1), i.e., much less than that of the oth
solitons in this subcase. Note that the characteristic dista
of the soliton evolution~such a distance is sometimes call
a ‘‘soliton period’’ or dispersion length! for p,q@1 is of the
order O(1/«), and therefore the AS2 soliton can propaga
several soliton periods in the fiber before being destroyed
the instability. In fact, a situation in which a weakly unstab
soliton could propagate a long distance before it decay
due to a weak instability, into another, stable soliton sta
has been recently reported@4# for the model of a weakly
birefringent fiber.
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Let us now consider some open questions regarding
bility of the solitons of the DCDP. The first open question
rather obvious: Is the core-symmetric soliton in Fig. 2~a!
stable in the limit (p,q)→`? We believe that a better way t
seek the answer to this question, rather than doing the n
order analytical calculations, would be to model the dyna
ics of the soliton in question numerically. In fact, solution
the other two problems formulated below will also requ
numerical simulations of Eqs.~1.1!.

The second open problem concerns the boundary of s
ton stability at finite~and low! energies. The numerical re
sults for the NLDC@1# suggest that the instability of th
core-symmetric solitons of the DCDP whose compone
have the same sign in both cores sets in right after the bi
cation curve where the~first! core-asymmetric soliton is cre
ated. However, for the core-symmetric solitons withu1u2,0
and/orv1v2,0, the situation may not be that simple. Indee
a weak oscillatory instability of the antisymmetric~with
u152u2) soliton of the NLDC sets inbefore that soliton
undergoes a bifurcation in the parameter space.@Note that in
that case, the bifurcation leads to the creation of a dou
humped soliton; in our work, solitons of the latter type a
thus the bifurcations that lead to their creation are exclu
by the choice of ansatz~1.2!.# Thus the stability of the core
symmetric solitons at finite energies requires a more th
ough investigation. We would expect, however, that at v
low energies, those solitons are stable, in analogy with
results for the NLDC.

Finally, another open problem concerns the final state
which the unstable solitons would evolve. In the ca
b52/3, the answer to this appears to be clear, because t
is only one stable soliton solution~for large energies!,
namely, the first core-asymmetric one in Fig. 1~a!. However,
for b52, at leasttwo solitons appear to be stable: these a
the core-asymmetric soliton in Fig. 2~a! and the core-
asymmetric soliton with smallv components in Fig. 2~b!.
Also, further studies may reveal that the core-symmetric s
ton in Fig. 2~a! is stable. Thus the final soliton state of th
evolution of a pulse forb52 could essentially depend on th
initial conditions. We also speculate that in this case, o
may have a long-term~quasi! periodic switching between the
cores, similar to what one has in the two-component NLD
for sufficiently low energies, when both the symmetric a
the antisymmetric solitons of that model are stable.
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