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Stability of solitons in nonlinear fiber couplers with two orthogonal polarizations
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In T. Lakoba, D. Kaup, and B. Malom€dPhys. Rev. E55, 6107 (1997)], the stationary solitons of the
nonlinear directional couplgiNLDC) with two polarizations in each core were studied and detailed by means
of the variational method. In the present work, we show how one can analytically determine the stability of all
the various solitons found in that previous work in the limit of large soliton energy. We emphasize that our
analysis isnotbased on the variational approximations for the solitons, but rather on their asymptotically exact
forms in the limit of large energy. We find that in all but one case, the stability of those solitons in this model,
which are analogs of any soliton of the NLDC, is the same as that of the corresponding NLDC soliton. We also
discuss how our results, valid for large soliton energies, can be extended to finite values of energy.
[S1063-651%97)05910-3

PACS numbgs): 03.40.Kf, 42.65.Tg, 42.81.Gs

[. INTRODUCTION second type, with polarization aligned along the fast eigen-
mode, are unstable for almost all values of their energy. The
Dynamics of solitary wavegsolitons, for brevity in non-  solitons of the third type, which were found[i] and which
linear optical fibers supporting propagation of two coupledhave nonvanishing components in both fast and slow modes,
modes has recently been a subject of intensive studiegere shown to be weakly unstable. To conclude this very
[1-10. Such a dynamics is quite rich due to the fact that inbrief overview of stability of two-component solitons in op-
the two-component models, there usually exist more tha,ﬁical fibers vyith .Kerr no.nlinearity, we mention that sol_itons
one stationary soliton state, which can be either stable df stronglybirefringent fibers were shown, both analytically
unstable depending both on its internal parameters and on tthé@—7] and numerically{8,9], to be linearly stable. Neverthe-

parameters of the model. Thus the issue of linear stability oSS, the dynamics of a near-soliton initial pulse in such a
solitons is crucial for studying their dynamics. system can also be quite nontrivial, since it has recently been

In [1], stability of solitons in two linearly coupled, single- Shown that it can havedepending on the value of the pa-
mode fiberdthis model is also referred to in the literature asameter of cross-nonlinearjty long-term internal oscillating
the nonlinear directional coupléNLDC)] was studied nu- mode[10]. _ _
merically. The NLDC can have, depending on the value of a Recently, we have considered in Rgf1] the model of
certain soliton parameter, up to three types of solit¢Be- WO linearly coupled optical fibers, with each fiber support-
low we will refer only to “single-humped” solitons, the rea- INg Ppropagation of two orthogonal eigenmodes with dis-
son being that solitons whose profiles have more than onénctly different phase velocities. This model is a natural gen-
maximum have always been found to be unstatfevo of ~ €ralization of the NLDC model, mentioned above. On the
them, symmetric and antisymmetric, were shown to be stabl@ther hand, when the fibers in our model are taken far apart
only for sufficiently low values of the soliton’s total energy. from each other, and thus the linear coupling between them
The solitons of the third typéasymmetri¢ were found to be IS €liminated, then one obtains the equations of pulse propa-
stable for all energy values larger than a certain thresholgg@tion in a single, strongly birefringent fib¢d2], which
Even before papdr], Wright et al. [2] had studied the sta- have also been thoroughly studieske, e.g.{10], and refer-
bility of the symmetric and antisymmetric solitorghe ~ €nces therein The equations considered ji1] have the
asymmetric soliton was not known at that tirie a more  following form:
general model than the NLDC, which also included the non-
linear coupling between the modes. In Ref8,4], the ; 1 2 2 _

(mostly numerical studies were concerned with the stability U1+ 3 Ug - Ug([ug]*+ Blug|*) + kU, =0,
of phase-locked solitons inwaeaklybirefringent fiber. Such

a fiber is known to have two linear eigenmodes, called fast iv1,+ 201+ v(Jva]?+ Blugld + kv,=0,

and slow modes, in accordance with the phase velocity they ! ' (1.1
have relative to one another. There have been three different

types of solitons found in such a moddl. It was shown in iUp,+ 3 Up-t Up([Ua]?+ Blv,l®) + kU =0,

Refs.[3,4] that solitons of the first type, whose polarization
is aligned along the slower eigenmode of the fiber, are al-
ways (i.e., for all energiesstable, while the solitons of the 102,43 V21 02(|va|2+ Blug|?) + kv, =0,
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where we have used the standard undimensionalized vanve summarize and discuss the results obtained; in particular,
ablesu; , andv, , for the envelopes of the electric field, and we discuss how our stability results can be continued from
z and 7 for the distance along the fiber and the time in thep,q>1 to the finitep andg. We also formulate open ques-
pulse’s reference frame, respectivédy., e.g.,[13]). Follow-  tions regarding the stability of solitons of the DCDP. It
ing [11], we will refer to Eqs.(1.1) as the “dual core, dual should be noted that the main results of our analysis were
polarization” model(DCDP). Let us note that the value of already announced ifri1].

the linear coupling constant in Eq. (1.1) can be scaled to

any nonzero value. Ifil11], we only considered the cases Il. REVIEW OF RESULTS

when 8=2/3 andB=2, which correspond, respectively, to ON THREE EARLIER MODELS

propagation of linearly and circularly polarized eigenmodes o

in each fiber. Any values o8 between 2/3 and 2 will cor- Since Egs(1.1) are a generalization of both the NLDC

respond to elliptically polarized eigenmodés2,13, and model and the model of a single birefringent fiber with two
qualitative predictions about the solitons of E();,is.l), with orthogonal polarizations, it is natural to start with a review of

2/3< B<2 can be made on the basis of the information ob-th€ Well-known results for these two models.
tained for the limiting cases g8=2/3 andg=2. The NLDC is .descnbed by two nonlinear-Sctioger
In [11], we studied the problem of the existence of sta-(NLS) type equations:
tionary solitons of the DCDP with the variational method. . 1 ) _
We approximated the soliton’s components by Gaussian trial U3+ 3 Ug Uy [*+Up=0, 2.1)
functions: :
22, 0o iUp,+ 3 Upt Up|Up|?+u; =0,
U1,2:A1,2eia T /2e|pz, V1= Bl,zeib T /2e|qz’ (1'2) . .
where the linear coupling constant has been set equal to
and for the stationary amplitudds ,, B; , and widthsa, b, ~ unity. The solitons of Eqs(2.1) are sought in the form
we derived a system of nonlinear algebraic equations, in .
which p andq played the role of control parameters. Then Un(z,m)=€Pup(7), n=12 (2.2)
from those equations, we found the boundaries of the regio
of existence for all types of solitons of Egd..1) and also
numerically calculated the typical profiles of the solitons.
In this work we present the stability analysis for all the
types of solitons found ifiL1], in the limit when the soliton’s
energy, defined as

rWherep is a real constant and,(7) are real functions. Let
us note that Eqg2.1), as well as Eqs(1.1) and Eqs.(2.5
below, are invariant with respect to the Galilean transforma-
tion, i.e., if a pairuy o(7) is a solution of Eqs(2.1), then so

is the pair

C2

E=E,+E,, (1.3 ufz(z,r)=u1,2(0)ex+C0+i(p+7

z|, 06=717—-Cz

(2.3

E=°Cu2+u2d,E=f0o 2+ |v,?)dr, _
! f_oc(| 1+ |uz[f)d7 v _w(|vl| lval%)d7 with C=const. We will make use of E¢2.3) in the next two

sections.

is large. The principal idea that allows one to perform such As explained in the Introduction, ER.1) possesses sym-
an analysis is the following. One can show that the limitmetric [with u;(7)=u,(7)] and antisymmetric [with
E>1, « fixed in Egs.(1.1) is equivalent to the limiE fixed,  uy(7)= —u,(7)] solitons, which exist fop=1 andp=—1,
k<1, i.e., the small coupling limit. Then by means of this respectively,
scaling, one can consider the linear coupling in @gl) as a
small perturbation for a two-component soliton in a single, u(r)=u(r)=2(p—1) sectiy2(p—1)7],
strongly birefringent fiber. Thus the original problem of the
stability of solitons of the DCDP in the limE>1, « fixed u@(7)=u@"(7)=2(p+1) sechiy2(p+1)7].
is reduced to the problem of stability of solitons in the
strongly birefringent fiber with such a perturbation, for In [1] it was shown numerically that the antisymmetric and
which the theory can be constructed along the standard linesymmetric solitons become unstable fe>—0.6 and
Let us emphasize that our analysis pertains to ¢kact  p>5/3, respectively. Thus these solitons are stable for suffi-
asymptotiafor E>>1) solutions of Eqgs(1.1) andnotto their ~ ciently small values of their energy and unstable for large
variational approximations obtained fih1]. The role of the ones. On the other hand, the asymmetric soliton, which is
variational method was to determine whiphrticular con-  created atp=5/3 with an already nonzero value of its en-
figuration, out of all possible ones, of the soliton’s compo-ergy, is unstabléwith a very small instability growth rajen
nents[see Eqs(2.12—(2.14 below] can be realized in the a narrow region near the point of its creation, and is stable
limit of E>1. for p>1.85; in particular, it is stable for large energy. Let us

The remainder of the paper is organized as follows. Innote that an asymmetric soliton wifi®1 has almost all of
Sec. Il we will review the results obtained [i1] for the its energy concentrated in one of the components:
solitons of the DCDP, as well as some relevant results fou,(7)/u,(7)=0(p) or uy(7)/u(7)=0(p).
earlier models. The details of our stability analysis will be The equations of pulse propagation in a single core with
presented in Secs. Il and IV, with the generic case beingwo orthogonal polarizations were derived[it2] (see also
treated in Sec. Il and a degenerate one in Sec. IV. In Sec. Y13]):

(2.9
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iu,+ 3 u+u(|ul*+Blv[*)=0,

(2.9

~
T

v+ 3 vt o(lv]*+ Blu®)=0.

One of the crucial assumptions in the derivation of these
equations was that the birefringent beat length between the
two eigenmodes is small compared to the nonlinear and dis-
persive lengths. The values of the nonlinear cross-coupling 4

coefficient3=2/3 andB=2 correspond to linearly and cir- 4r
cularly polarized eigenmodes of the fiber, respectively, and
for a general, elliptically polarized eigenmode, /B<2. 3r
Below we will refer to Eqs(2.5 as the vector NLS equa-
tions (VNLS). 2t
Stationary solutions of the VNLS are sought in the form
. . 1t
u(z,7)=u(7)e’?, v(z,7n)=v(r)e'% (2.6)
with u(7) andv(7) being real. When botb andv are non- % 2 4 6 8
zero, the solutiori2.6) is said to form avector soliton which P
we will denote as (g,vq). Vector solitons exist in an open 8
angle in the p,q) plane between the straight lings4,15:
7_
. (J1+8B-1)"?
Qer= 2 P. (27) 6F
Outside that domain, there are only solitons of either of the il
following two forms: 4t
q
(Uool ) =\2p sech2p7, v(7)=0), (2.8 3t
(U(1)=0, v 7)=12q sech/2q7). (2.9 2
Along the bisectorp=q, there exists a solution with hi
|u|=|v|, which can be easily found from Eq¢§2.5 and o
(2.6). For g;<q<qg, andp#gq, the analytical form of the
vector soliton is not known; howeveauy(7) andvy(7) were It
found numerically in, e.gJ,15]. Through extensive numeri- Pk , . . .
cal simulationg[8], the vector solitons of the VNLS were 0 2 4 6 8 10
found to be stable for all values gf andq. p

Let us now briefly summarize the relevant results of Ref. ) ) ) )
[11]. If in the DCDP one imposes the following relation FIG._l. Regions of existence of solutions of E@8.3) with
between theparallel components in the cores: B=213 in the p,q) plane.(a) and (b) correspond to the cases
(A;A,>0,B,B,>0) and A;A,>0,B;B,<0), respectively; a fig-
Up=ply, v1=p0,, m,v==1, (2.10 ure for the caseA;A,<0, B;B,<0) is not shown. Note that itb),
A;=A, andB,;=—B, along the bisectop=q only for the core-
then Egs.(1.1) reduce to equations of the for(@.5), where  symmetric soliton.
the control parameterp and q in Eq. (2.6) should be re- ) ] ) )
placed by p— ) and (@— v), respectively. Solitons of the asymmetric An ana}log of the core-asymmetric soliton is
DCDP which satisfy the reductiof®.10) were called i{11] ~ the asymmetric soliton of the NLDC. _
core-symmetricThese core-symmetric solitons are the ana- /" Figs. 1 and 2 we plotted the regions of existence of all
logs of the symmetric and antisymmetric solitofgs4) of ~ ©f the various types of solitons of the DCDP, which were
the NLDC. Now, to characterize the relation between thePPtained in[11] with the variational method. Outside the
orthogonalcomponents in the same core, it is convenient toShaded areas in these figures, there only exist solitons with

introduce a new parameter. either bothu or bothv components vanishing; we will not
consider here such solutions because they simply reduce to
(q—v)=y(p—pu). (2.10 the known solitons of the two-component NLDC. The core-

symmetric solitons exist inside the open angles bounded by
For the core-symmetric solitony, is the analog of the ratio the straight lines. The dashed lines denote bifarcation
g/p for the VNLS (2.5). curves at which the core-asymmetric solitons are created as
In [11] we also found numerically the variational approxi- a result of a bifurcation from the core-symmetric ones. The
mations for the solitons of the DCDP which do not possesslash-dotted lines show where two of the componégither
symmetry (2.10. Such solitons were called ifil1] core- u;, or vy, of the core-asymmetric soliton vanish; thus at
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p

FIG. 2. Same as in Fig. 1, b=2. Note that in(c), A,= —A, andB,= — B, along the bisectop=q only for the core-symmetric and
the core-asymmetric AS2 solitons.

these lines the solutions reduce to the asymmetric solitons dhe asymmetric soliton of the NLDC, since for all suffi-
the NLDC. We will now give specific comments about eachciently largep andq, its components satisfy the relatigcf.
type of the core-asymmetric solitons, depicted in Figs. 1 andl11])
2.

B=2/3,u;u,>0, vw,>0 [Fig.1(a)]. The first type of U, vq
core-asymmetric solitons exists in the open region bounded u_2“0_2 (2.13
by the two dash-dotted curves and the lower dashed curve. In
the next two sections we will need the asymptotic form of
the solitons for large values of their energy, i.e., iogq— .
In this limit, one has for the first core-asymmetric soliton in
Fig. 1(a)

The second core-asymmetric soliton, which exists inside
the region bounded by the upper dashed curve, has the
asymptotic form

Ug,vq)—(Ug,vg), (Us,v2)—(Ugy,0), (2.12
(U100 (Ug0e),  (Uns0s)—(0.0), (2.12 (U1,v1)—(Ug,v0), (Uz,v2)—(Ugp,0), (2.12)
whereug, andv o, were defined in Eq942.8) and(2.9). We
where (g,v,) is the vector soliton of the VNLSThe asym-  also remind the reader that a core-symmetric soliton with
metric solitons always come in pairs, the two solutions in asome value ofy [see Eq.2.11] has the same form as the
pair differing by interchanging the subindices 1 angIRis  vector soliton (i5,v,) with the ratiog/p equal to the same
worth noting that this solution is a four-component analog ofvalue y.
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B=2/3;u;u,>0, v,<0 [Fig. 1(b)]l. The core- powerP~50 W and a relatively high-dispersion fiber with
asymmetric solitons exist in the region bounded by theD~100 ps/nm km(see, €.g.[17]). With these parameters, a

dashed and dash-dotted lines; their asymptotic form fogolution of Egs.(1.1) with p=q=1 will correspond to an
(p,q)—> is approximately 1-ps-long pulse. Now, we expect that our sta-

bility results will be valid in the regions in thep(q) plane
(ug,v1)—(Ug,vg), (Uz,v2)—(0,—vge). (2.14  located beyond all of the bifurcation curvés. Figs. 1 and
) . 2). [Indeed, an occurrence of a pitchfork bifurcation to a
B=213,u1u,<0, v1,<0. Only the core-symmetric soli- gqytion usually indicates the appearance in the spectrum of
tons exist inside the open angle bounded by the straight linge corresponding linearized equation of an unstable mode
(2.7), with p andq in that equation being replaced byt 1) (see, e.g.[1]), with the instability of that mode being purely
and Q+1), respectively. exponential rather than oscillatory. All the unstable modes
B=2up;>0, vyw,>0 [Fig. 2(a)]. The only type of inat we find below are of this type, since the corresponding
core-asymmetric solitons exists in the region bounded by th%igenvalues are purely imaginaythen, as it is seen from
dashed and dash-dotted lines; its asymptotic form is given bjgs 1 and 2, taking~q~ 10 is a good approximation to
Eqg. (2.12. The relation(2.13 is also valid in this case. the asymptotic limitp,g>1. On the other hand, the pulse

B=2uU,>0, v10,<0 [Fig. 2(b)]. The core-asymmetric gk scales as 1fp and the pulse energy scales &s (see
solitons which exist in the narrow strip between the dashe ext sectiolr consequently, the nonlinear and dispersive

line and the upper solid line have a very smaltomponent  jo04hg hoth decrease agplfFor p=10, this would yield
an(_j thus are very similar to the two-component, asymmet_ng_p%300 fs, E~150 W, andl.~20 m. Clearly, for such
solitons of the NLDC. The other type of core-asymmetric i, .se \yidths, the approximation of the slowly varying am-
solitons exists in the region bounded by the upper solid lingyji ,qes still holds quite well, and the pulse intensity is also
and the dash-dotted line; its asymptotic form is sufficiently low to neglect any change in the structure of the
linear eigenmodes of the fiber due to nonlinear effects.
(U1,01)=(Uo,vo), - (U2,02)=(Uoo D). (219 Thus, in the following two sections, we will stay within
B=2:uU,<0, vqv,<0 [Fig. 2(c)]. There are three differ- the mathematical model given by Edq&.1) and develop the
ent types of asymmetric solitons, which are denoted as ASHStability analysis for its solitons in the limit ofp,q— .
AS2, and AS3. Their regions of existence are marked in FigThen, in the concluding section, we will extrapolate our re-

2(c), and their asymptotic forms are the following: sults to the region of large but finife andq.
(Uup,v1)—=(Upe0), (Up,vx)—(—Ug,—vg) (ASD), Ill. STABILITY OF SOLITONS OF THE DCDP:
(2.163 GENERIC CASE
(Ug,01)—(Upp0),  (U,v9)—(0,—vog (AS2), The idea of investigating stability of solitons of the DCDP

(2.16b with p,g>1 is simple. First, notice that such solitons have
large amplitudes and small widths, which can be seen from
(ug,v1)—(Ug,vg), (Up,v2)—(0,—vgy (ASI). the special solutions presented in Sec. Il. Next, one can per-
(2.160  form the following scaling transformation in Eq4..1):

To conclude this section, let us note that the limit u=ul\e, v=vle, T=1\e, z=7e. (3.
p,q—, in which we will study the stability of the solitons _ _
of the DCDP, can only be taken formally, because, strictlyLet so introduced amplitudes and v, as well as the soli-
speaking, it is inconsistent with thetandard assumption of ton’s width and dispersion length expressed in terms of the
the slowly varying amplitudes, under which that model wasrescaled coordinateés andz, respectively, have magnitudes
derived. Moreover, since in this limit one also h@s-« O(1). Then taking the limit <1 in Eq.(3.1) corresponds to
[see Eq(1.3)], then the structure of the linear eigenmodes inthe limit p,q>1 in terms of the original variable§ln fact,

the fiber may also change due to the strong nonlinear correge o propagation constants are rescaled as follqwsp/e

tions, which will also invalidate Eq$1.1). However, we will = ~—
now show that for realistic pulse and fiber parameters, ther@d 9=d/e, where p,q=0(1).] On the other hand, the

is a range op andq where Eqgs(1.1) are still valid, and yet tilded quantities satisfy Eq¢1.1) with x=e«. Since using
the results of our analysis are applicable. Thus we will demthe above scaling transformation, one can always rescale a
onstrate that taking the limit of large andq, besides being Nnonzerox in Egs.(1.1) to unity, we will write in what fol-
a convenient mathematical tool, also corresponds to operatews k =& without restricting the generality. Below we will
ing in a physically relevant range of parameters. also omit the tilde sign. Thus we have shown that the limit
Following [16], we assume the following parameters for p,q>1, « fixed in Egs.(1.1) is equivalent to the limip,q
the coupler and the pulse: separation between corefixed, <1, which is the limit of small coupling between the
=45 um, diameter of a corel=8 um, difference be- cores. Then the problem of stability of solitons of the DCDP
tween refractive indices of the core and the claddingin the former limit is reduced to the problem of stability of
An=5x10"3, carrier wavelengtih\~1 um, pulse width solitons in a single, strongly birefringent fiber, with the per-
7,=1 ps. Then in Eqs(1.1) k=0.75 andz is normalized so turbation being the linear coupling to the other fiber.
as to have the coupling lengthy, ;=200 m[16]. Then the If one formally setsk=¢=0 in Egs.(1.1), then the re-
requirement that the nonlinear and dispersive lengths be &fulting equations will describe twoncoupledcores, with
the same order, i.el.,,~200 m, necessitates using the pulsetwo orthogonal polarizations in each. The equation for each
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core is the VNLS(2.5). A vector soliton of the VNLS is

)T
invariant with respect to the transformation

_ * * * *
Win(7) = (Ugm,UTm 0 1m0V 1m»Uzm:Usm U 2msVom

u(r)—u(r—T1)€'%, v(r)—v(r—T10)e'%, (3.2 m=01.

[In fact,u;o(7), uyq(7), etc., are real. We only introduce their
complex conjugates here for notational convenience later
onJ] In order to make the ensuing formulas more compact,
yve will use the notations

where 7y, ¢, ande, are arbitrary constants. Therefore the
vector soliton(2.6) has three Goldstone modes which corre-
spond to the infinitesimal shifts ofy, ¢,, and ¢, . Alto-
gether, there are six Goldstone modes for two independe
vector solitons in the two uncoupled cores. Such modes are
always neutrally stable. Now, when one couples the two
cores by allowing the linear coupling constanto be non-
zero, there remain only three Goldstone mod@se corre-
sponds to the shift of the common center of all the four
components, and the other two to the shifts of the phases of
the u; , and v, , components The other three “formerly
Goldstone” modes need no longer be neutrally stable, and,
in general, they will become modes of the dlscre.te SpeCtrunAbove,l is the 2<2 identity matrix,i:(x- x)T, and the
with nonzero eigenvalues. Then for< 1, one can find these . . ! U
. : Pauli matrices are
eigenvalues by means of a perturbation theory, and thus es-
tablish the stability or instability of the soliton. We will now 0 1 0 —i 1 0
g|v|(_aetthe details of these calculations. o, ( . 0y ( - ) o3 (0 _1),
(U1 T)€PZ,0 1o 7)€ Uy 7)EPZ v, T)E9D)T, (3.3 Thus, for instance, if all of the components of the veatgy
(m=0,1) are real, then
where the superscript indicates the matrix transpose, be a
four-component vector soliton of Egdl.1) with e=0. Note Wiy = (101,101, Uam, 10om) T, M=0,1.
that even though fog =0, the vector soliton in the first core
is not coupled to the vector soliton in the other core, we havey|so, we will use the notationr; for a block-diagonal matrix
required that the propagation constants of the parallel comyiag(s,, 05,05, 03).

ponents of both solitons be equal, because this is the solution gypstituting the expansiori3.4) into Egs. (1.1) with
of interest fore —+0. When G<e<1, then we can expand =, one finds that vectow, satisfies the following equa-

(IX1,1X2,1X3,1X2) T fOr (Xq,X1,%Xp,X2,X3,X3,X4,Xa) "

> v v >NT
(03X1,03X2,03X3,03Xs)

for (Xq,—Xq,Xp,—Xp,X3,—X3,Xq,—Xg) .

10

the profile of the stationary soliton by tion:
Un(7) =Uno(7) +&Uny(7)+ -+, (Ll 0)
Eow,= wi=R[Wo], (3.9
vp(N=vpo(T)+evm(n)+---, n=12. (3.4 o Lyt [Wol
Let us introduce the eight-component vectors where
Sl
277 P)s (2uho+ Buhg) oatUngio BUngvno(oztios)
L,= + . 2 2 2. , n=172
0 (1 2 ) BUnovno(oztioy) (2vg0t Bupo) o3+ vyl 02
E&T qlos
(3.639
|
and between the two cores. As will be shown belpafter Eq.
(3.20], the right hand side of Eq3.5) is orthogonal to the
RL(Y1.Y2.Y3.Y4) '1=—(Y303,Y403,Y103.,Y203)". zero modes of the operathg, so that the solvability condi-

(3.6b  tion for Eq. (3.5 is always satisfied. Then, the stationary

i correctionsu,;,v,1, N=1,2 to the soliton will be exponen-
In Eq. (3.6D), y1, etc. are arbitrary two-component row vec- tja|ly decaying functions ofr|. Equation(3.5) is, in general,
tors. Note that the operatdr, in the left hand side of EQ. quite complex; however, we wilhot need its solution in
(3.5 is the linearized operator of Eq¢l.1]) on the back-  explicit form.
ground of the solitor{3.3), which is a solution of Eq91.1) When none of the components of solitth3) are zero,
with k=0. The operatoR in the right hand side of Eq3.5) then fore =0, that soliton has six Goldstone modes of the
arises from the terms describing the small linear couplingollowing form:



lugo, - o3ilgg
lv 0
P9 = 107 (20)
glugo, - goslUyg
glvzo, 0
0
0'3i V1o
3,
$6? N (3.7)
0
gosivyg

whereg==*=1. The modes withg=+1 correspond to the
equal shifts of the parameterg, ¢, ande, , defined in Eq.
(3.2), for the uncoupled solitons in the two cores, wherea
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G
10.C75C | p=const 10.p ap | _ '
c=0 q=-const
Ulqu:_ y elc.
79 p=const

Here the solitonu$, is obtained fromu,, by the Galilean
transformation(2.3), so thatC is the soliton velocity. Ac-
cording to this definition, it is easy to obtain that

T
ulO'C:|§u101 etc.

(3.11

However, no such relation can be given €gg,, Uioq4, €tC.,
since the explicit dependence of the components of the vec-
tor soliton(3.3 on p andq is not known.

s Now, for 0<e<1, the three modespy "V (i.e., for

but oppositely directed such shifts. All these Goldstonethree(we remind the reader that we consider the case when

modes satisfy the equation

Lopd9=0, j=1,2,3. (3.9

Thus the eigenvaluk of the operatot.; will have multiplic-

ity of 12 for A =0, since for each of the above six Goldstone

modes, the spectrum of the operaltgris doubly degenerate.
Indeed, to each of these six modes, there corresponds a
called associate modeﬁ%'g) (also called a derivative state,
cf. [18—20), which satisfies

ajtod?'= (7, (3.93

where the normalization constants , 3 have been chosen to
be

a1=—i, (39b)

a2=a3=i.

The explicit form of the associate modes is the following
(cf., e.g.,[20]):

a3Ujo,c [Uig,p
(19)_ o3V10,C 29)_ IUlo,p
D - - ] D - - 3
go3Uz ¢ glug p
Qo3vo0,c glvyg p
|Ulqu
1010
39)_ g
9= |, (3.10
gluzg, q
glvo,q

where

none of the components of the solitt@3) are zero; the case
when one or more of those components vanishes will be
commented on latgmodes, withg= —1, may acquire non-
zero eigenvalues as modes of the discrete spectrum of the
linearized Egs(1.1). Since eachp{ ") is doubly degener-
ate, as explained above, then fo# 0, each must, in general,
split and give rise to two modes of the discrete spectrum.

To determine how the eigenvalues of these new modes
shift, one needs to linearize Eq4.1) on the background of

e soliton(3.4). Thus we let

Ul,z(TyZ):[Ul,z(T)+U1,2(T,Z)]eipz,

vy A T,Z)=[U1'2(7)+V1'2(7',Z)]eiqz, (3.12

where|U; J<|u; J and|Vy J<|v; 4, and the magnitudes of
U,,andV,, arenotrelated to the value of. Note that we
have performedwo expansions. The first expansion, given
by Egs.(3.4) and (3.5, defined how the stationary form of
the soliton shifted fore#0. In the second expansion, Eg.
(3.12), we considearbitrary (but smal) perturbations of the
profile of the soliton(3.4).

For the eight-component vector

Wy(7,2)=(Uq,UT ,Vy,VE Uy, US Vo, V)T
we obtain the following equation:

(10, L)W =e{R[W;]—(ALg)W,}, (313
where we have dropped terms of or@@fe2) and higher. In
the last equation, the notatioA£ ) is the following:

AL,

0 ):LO[(ulavlvUZvvz)]

(ALO)E( AL,

—+o[(U10,010,Uz20,020) ], (3.143

where the notatioh o[ (a,b,c,d)] means that, b, c, and
d are substituted fouyg, vig, Uz, anduvyg, respectively,
in Eq. (3.6a. One obtains
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AL = 2(2UpoUn1+ Bunovn1) 03+ 2UngUn1i 02 B(Unovn1tUn1vno) (o3 t+ios) (3,148
" B(Unovn1+Univno)(o3tios) 2(200v 1+ BUnoUn1) 03+ 20 ngUn1i 075 .
|
wheren=1, 2, andu,,, etc. can be found from E@3.5). It N2 U 5ol pUIN=( pT D G (AL ) YD
is seen from Eq(3.13 that the introduction of a small linear (A7) (¢ |03l &%) = (o oa(Ato)l o)
coupling between two, originally uncoupled, cores can affect — (0955 RLSG9T)
the stability of the solitons in such a system in two different 0 8 0 (3’20)

ways. First, the coupling terms alter the form of the corre-
sponding linearized equations, which is accounted for by thuhere for any eight-component vector functiofisr) and
first term in the right hand side of E¢3.13. Second, the h(7),
stationary solitons in the presence of a small coupling are
different from those with zero coupling, cf. Eq8.5 and - I RS
(3.4). Therefore linearization now needs to be performed on (floslh)= f_wf (n)osh(r)dr.
the background of a soliton that is slightly different from that
in the case of zero coupling. This leads to the occurrence dsimilarly, one establishes that the solvability condition for
the second term in the right hand side of E8.13). Eq. (3.5, which determines the stationary first-order correc-
To solve Eq.(3.13, we use the separation of variables: tionsup,;,v,, N=1,2 [see Eq(3.4)], always holds.
Now note that the term in angle brackets in the left hand

Wy(7,2)=¢(7)e?, side of Eq.(3.20 is independent of, and so is the first term
in the right hand side due to the block-diagonal structure of
and obtain: (ALk,) [see Eq«(3.143], while the second term in the right
hand side is proportional tg, see Eqs.(3.7) and (3.6b).
Lodp=Nop+e{R[p]—(ALy) &} (3.15  Furthermore, we know that the modes widk- +1 remain

the Goldstone modes fer# 0, and therefore their eigenval-

Thus, if there exists at least one modf' ) which has an Ués must not shift from zero, for all ordersafin particular,
eigenvalue with Im<0 for 0<e<1, then the correspond- Ay’ "Y=0 forj=1,2,3. Then from Eq(3.20 it follows that

ing soliton (3.4) is linearly unstable. the second term in the right hand side is exactly cancelled by
To solve Eq.(3.15 by successive approximations for the first one whey=+1, and so fog= -1, the right hand
0<e<1, we assume the following expansions: side must be twice the second term. Thus E2j20 for

g=—1 can be rewritten as follows:
j,—1 =1 - j,—1
A 2ai( Vol )

)\(j’g)=\/g)\(lj’g)—i-s)\(zj’g)—l----. (3.16 :_2<¢gj,—1)|(}3|R[¢gj,—1)]>_ (3.2

¢(1,g>:¢g,g>+ \/g¢(11,g)+8¢(21,g>+...’

The expansion in powers ofs rather thans is being per- ubstituting Eqs(3.9), (3.10, and(3.11) into Egs.(3.21),
formed because each of the Goldstone ma8e® is doubly ~ O"€ obtains equations which, in the first approximation, de-
degenerate. Substituting E®.16 into Eq.(3.15 and using termine the eigenvalues of the modes of the discrete spec-
Eq. (3.8), one obtains in the first order: trum:

o

Lo 9=\ 09 (3.17 (NETD2(E,+ Ev):16f (U10, U0, -+ V10,7020, 7)dT,

. . (3.223
From Eg. (3.9, a particular solution of the last equa-

tion is JE, o
02t =8 wgin (322

(;S(lj‘g):)\(lj’g)aj ¢%,g)_ (3.18) P g=const -

. JE, -
In the next order, one obtains from Ed8.15, (3.16), and (A 1))25 = —SJ viwodT,  (3.220

(3.18 p=const -
0.9 N2 - 20 o (u0) 4(in0) 0. whereE, andE, were defined in Eq(1.3). We will present

Lodd Y =(\Y) a9+ 0TV pd Y +{R[ ¢y 9] the conclusions regarding the stability of the solitons, which

follow from Egs.(3.22, in Sec. V.

Let us remark again that Eg&.22 are valid only when
_ . Uo7 0 andov 07 0, since otherwise the total number
Now multiply Eq.(3.19 by (¢J'?)To5 on the left, integrate  of Goldstone modes will be less than six. Indeed, if, for
over 7, and use the fact thatst o is a Hermitian operator. example,uygi;=0 and vy e#0, then ¢ D=+,
This gives the following solvability condition for Eg3.19:  and also¢{2™ Y= ¢{2*V [to see that the latter relation is

—(Akg) ¢y 9} (3.19
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true, one needs to notice that wheg=0, thenv, ,=0 in  One also has to take into account the second-order correction
Egs.(2.5]. Thus in this case one has five Goldstone modeserms to the stationary solution:
instead of six in Eq(3.7). However, we can still use Egs.

(3.22 in this casdas well as in the case whengu,,#0 and Un(7) = Uno(7) + 8Uns(7) + &2Upa(7) + -+, 3
v1v20=0) to determine stability, as long as at least one of '
the eigenvalues has an imaginary part, in which case the n(7)=0no(7) + &0n1(7) + %0 () + -,

corresponding soliton is unstable.
Now, whenu;gu,,=0 andv;w,0=0, Egs.(3.22 do not  for n=1,2; recall that the above solutions are real. From Egs.

yield information regarding the stability of the solitons. In (3.5), (3.6), and(2.16b one finds that
this case, one needs to consider two different possibilities.

First, whenu,g=v,0=0 andu;,#0%#v40, Egs.(3.7) yield [(30%—q)+ Buiglvi=—vo0,
only three Goldstone modes. Since for<8<1, these (4.43
modes continue to be Goldstone modes, then no modes with [(%%— p)+ﬁvc2)o]U21= ~Ugo

nonzero eigenvalues exist in the discrete spectrum, and so
the background soliton is stable. This situation is realized for
the first core-asymmetric soliton in Fig(dl and the core-
asymmetric soliton in Fig. (@) [see Eq(2.12)]. Thus those
solitons, which are the four-component analogs of the asy
metric soliton of the NLDQ2.1), are stable fop,q>1. The
second possibility is wheni,p)=v,0=0 and u,g#0# v,
which is reahze(dl’j("i))r the.ASZ soliton in Fig.(@. In th|§ Up# 0% 00, U1p=0=Uy, (4.40
case, the mode , Which corresponds to the oppositely

directed shifts of the centers of the solitons in the two unut we will not need the explicit form of those corrections.

U11=v,=0. (4.4b

One can also show that the second-order correction terms,
Mahich satisfy an equation similar to E@3.5), satisfy the
relations

coupled cores, is different from the modg'* Y, corre- Now, up to the ordeO(s?), the equation for the eigen-
sponding to the similarly directed shifts. Therefore E&s7) mode is

yield four Goldstone modes, of which ong{ ), may

acquire a nonzero eigenvalue fer0. To find that eigen- Lop=Nop+e{R[p]—(Arto)p}—e*(Ako) ¢, (4.5
value, one needs to use an expansion different from Egs.

(3.16). We do this in the next section. where (At () is the same quantity which was defined in Eq.

(3.14), and (A,t ) is the second-order correction to the op-
eratork 5, which is due both to the second-order terms of the
expansion(4.3) and the quadratic combinations of the first-
order terms of that expansion. Both {t ;) and At ) have

As was explained at the end of the preceding section, ithe block-diagonal structure shown in E§.143; however,
the case of the AS2 soliton in Fig(@, the only “formerly  within the nonzero %4 blocks, the structure of these ma-
Goldstone” mode which may acquire a nonzero eigenvaludrices is different, namely,
for e #0 is ¢~V in Eq. (3.7). From Egs(3.7), (3.10, and

IV. PROOF THAT THE AS2 SOLITON
IN FIG. 2(c) IS UNSTABLE

(2.16b one finds its explicit form, as well as that of the AL _( 0 BUow 11(03+i07)
associated mode: =171 gy +i '
BUow 11(o3+ios) (4.63
oo, , T3lgo,c AL _( 0 Bvoou21(03+i02))
0 0 172 Buogai(oat+ioy) 0 '
¢ = - | Y= o |, @D
0 0 and
9'1;00,7 9‘73500,0 * 0
, _ , Aan=< *), n=1,22 (4.6b
with g=—1. The mode witlg= + 1 continues to be a Gold- 0

stone mode even fos#0. We will not be referring to the
modes¢{?? and ¢$9 in this section, and therefore below Where the asterisk stands for a nonzera 22block, whose

we will refer to the modeaﬁgl'g) simply as tOng)g) _Notethat €xplicit form we will not need. Expressions in E¢.6) were
the relative sign of the nonzeroandv components of the ©OPtained with the use of Eqe3.6a, (2.16b, and(4.4).

soliton is unimportant, and so we chose both these compo- Proceeding with the solution of E¢4.5), one obtains in
nents to be of the same sign. the first order

Instead of Eq(3.16), one should now use another expan- (@ _+ (@) £(9) (9 ()
sion for the eigenmode and its eigenvalue: todt" =N by + RG] (Ako)dg”. (4.7

(@) = 4@ (@4 o240 ... Solvability condition for this equation is satisfied. Indeed, if
¢ $o tedr teth A it were not, then the expansion for the eigenvalue would
@ @ 4 2 (@) have been given by Eq3.16 rather than Eq(4.2), and the
MNO=enP+e N+ . (4.2 Jatter is not the case, since then one of E@22 would
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have provided conclusive information about the stability of 1 52_q)+ Bu2 _ 411
the AS2 soliton in the first order. Now, a particular solution [(z 92~ Q)+ Bugol¥1=voo.-, (4.113
to Eq. (4.7) has the form

[(3 7= P)+ BuGol¥2=Ugo, - (4.11h

$¥=aN PP+ ¢~ B, (4.9
wherea=a;=—i [see Eq(3.99] and [(3 *—a)+ Budol 3= B(Us) w11, (4.119
Lot =RloGV], todd=(Asko)d. (4.9
Using Eqgs.(3.5), (2.16h, (4.1), and(4.63, one finds that

[(32—p)+Bodla=B(vi)Uyn. (4110

In the next order, one finds from E¢.5

0 0
so__| 9] e | ' @10 tods? =N o + MY ¢ +RIG ]~ (At o) ¢
R~ K AT - | :
Iz 9lda —(Asto) . (4.12
0 0 _
Using Egs.(4.1), (4.8), (4.10, (3.6b, and (4.6), one can

wherey,, n=1,...,4, aresolutions of the following equa- show that only the following terms will contribute to the
tions: solvability condition of Eq(4.12):

<x&9)>2a<¢5,9)|&3|¢%?>>=<¢ég>|&3l{R[¢gg>]+<A1Lo>¢&9>}>—<¢59>|&3|{R[¢£§’>]+<A1Lo>¢<£>—<A2L0>¢5g>}>-( ;
4.1

One can verify, using Eqs4.1), (4.10, (3.6, and(3.14), B=2/3,u3u,>0, vw,>0. As it was shown at the end of
that the first term in the right hand side of E@t.13 is  sec. IIl, the first core-asymmetric soliton in Fig(al is
proportional tog, while the second one is independent of it. staple forp,q>1. In analogy with the results for Eq&2.1),
Since forg=+1, the two terms must exactly cancel each\ye surmise that that soliton is stable either immediately or
other (cf. Sec. ll), then forg=—1, the right hand side is ghortly after the first bifurcation curve in Fig(d. The core-
twice the first term. Then, using Eqel.10 and(4.63, and  gymmetric soliton and the second core-asymmetric soliton
also(4.1) and(3.11), one obtains [see Eq(2.12)] are unstable since for them £~ 1)2<0 in
Egs.(3.22 [for the core-symmetric soliton\(>~V)2<0 as

(NTDAE+E,) = —4f {[Walgo, .+ B(v50) path] well]. In arriving at this conclusion, we have used the fact
o that for all the types of solitons in the case considered,
+[ 3000, -+ B(Ugo) w1241 1A 7 IE /3P |q=const>0, Which can be seen from Fig(d and
Eqg. (2.7) with B<1. We note that the instability of the core-
:—8Jm [B(v50) 21tk symmetric soliton in this case is analogous to that of the
—o symmetric solution of the NLDC, and so we surmise that for

5 finite p andq, the core-symmetric soliton is stable before the
+B(Ugo) 1191 ]1d7, (4.14 first bifurcation curve and unstable beyond it. Then the sec-

where in deriving the last line, we have used Egs4a and o_nd cqre-asymr_netnc gohton must be unstable f_opaihdq .
4.11). since it comes into existence as a result of a pitchfork bifur-

We numerically solved Eqg4.4a, (4.113, and (4.119 cation from the already unstable core-symmetric soliton.
for various values of the ratiay(p) in the interval , , vo,) '3:%3_’1)“%“?0’ v1v2<0. For the core-symmetric soli-
[cf. Egs.(2.12), (2.7)] and found that the right hand side of tor:i 9‘1% 2 )*<0, and also for the core-asymmetric soliton,
Eq. (4.14 was always negative. This means that( i ~)°<O0[see Eq(2.14)]. Thus both types of solitons in

()\(l*l))2<o, and so the AS2 soliton in Fig(® is unstable this case are linearly unstable for langendq. However, in
in the limit of largep andq. analogy with the results for the NLDC, the core-symmetric

soliton with sufficiently low energy may be stable.
B=2/3, uu,<0, vw,<0. The core-symmetric soli-
ton in this case hasn{* )?<0, and thus it is unstable.
In this section, we will first use Eq$3.22) to derive the This is analogous to the instability of the antisymmetric soli-
stability properties of the solitons of the DCDP. Then weton of the NLDC.
will formulate open problems regarding the stability of soli- B=2 u;u,>0, vw,>0. As was shown at the end of
tons of the DCDP. Sec. lll, the core-asymmetric soliton is stable, similar to the

V. DISCUSSION OF THE RESULTS AND CONCLUSIONS
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case wherB=2/3. Now, unlike that latter case, here one has Let us now consider some open questions regarding sta-
for the core-symmetric soliton bility of the solitons of the DCDP. The first open question is
rather obvious: Is the core-symmetric soliton in Figa)2
stable in the limit p,q) —»? We believe that a better way to
<0. (5.2 seek the answer to this question, rather than doing the next-
p=const order analytical calculations, would be to model the dynam-
ics of the soliton in question numerically. In fact, solution of
This can be seen from Fig.(&@ and Eq.(2.7) with 3>1. the other two problems formulated below will also require
Therefore all the eigenvalues for the core-symmetric solitomumerical simulations of Eqgl.1).
are real in the first approximation. However, that solution The second open problem concerns the boundary of soli-
still has a chance to be unstable, if it turns out that in the nexton stability at finite(and low energies. The numerical re-
approximation, at least one of the}'"''s is imaginary. ~sults for the NLDC[1] suggest that the instability of the
However, in that case the rate of instability, if one returns tocore-symmetric solitons of the DCDP whose components
the initial evolution variable [see Eq.(3.1)], will have the have the same sign in both cores sets in right after the bifur-
order of magnitudeD(1), while in all the cases considered Cation curve where théirst) core-asymmetric soliton is cre-
so far it had the order of magnitu@(1/\/=) [cf. Eq.(3.16].  ated. However, for the core-symmetric solitons withi, <0
B=2, Uuyu,>0, v,<O0. For the core-symmetric soliton, @nd/orvv,<0, the situation may not be that simple. Indeed,
Egs.(5.1) hold, and therefore)((13*’1))2<0 for this type of & weak oscn_latory instability of thel antlsymmetr(u\{lth
soliton. For the core-asymmetric soliton which exists on the!1= —Uz) soliton of the NLDC sets irbefore that soliton

right hand side of the dash-dotted curve in Figb)2 we undergoes a bifurcation in the parameter spfdete that in
found numerically thawE,/dp| >0, and so for this that case, the bifurcation leads to the creation of a double-
u g=cons| ’

type of soliton, Q\(lz,fl))2<o. Thus both of the above types humped sphton;.ln our work, sol|ton§ of thg latter type and
. thus the bifurcations that lead to their creation are excluded
of solitons are unstable fqu,g>1. However, by the same . -

. o .~ by the choice of ansatd.2).] Thus the stability of the core-
argument as in the case wiji=2/3, the core-symmetric symmetric solitons at finite energies requires a more thor-
soliton with a sufficiently low energy may still be stable. Oﬁ h investigation. We would exgect h(()]wever that at ver

Let us note that Eq€43.22 cannot be used for the stabil- 9 9 ' pect, ' y

ity analysis of the core-asymmetric soliton which exists inIOW energies, those solitons are stable, in analogy with the

the narrow strip near the upper boundary in Figh)2be- resIgilr'falflOr ;hnitwéf)c? 'en roblem concerns the final state to
cause that strip has zero width in the lirpitq—« (cf. Sec. Y pen p

II). However, we believe that this type of soliton is stableWhICh the unstable solitons would evolve. In the case

because its shape must be very close to that of the tW0@=2/3, the answer to this appears to be clear, because there

component asymmetric soliton of the NLDC, which is Is only one_stable soliton soI'uti0|(1fo.r Iqrge energies
known to be stablésee Sec. I ' namely, the first core-asymmetric one in Figa)l However,

o i . . for B=2, at leastwo solitons appear to be stable: these are
B=2, Uju,<0, vyw,<0. For the core-symmetric soliton, core-asymmetric soliton in Fig.(@ and the core-
all the three eigenvalues given by E§.20 are imaginary, . i ith L
while for AS1 and AS3 solitons A(‘f"l))2<0 see Egs ZTym:cne&TC S? |é(_)n wit smalzl;lfr:)r?{)honents n Fig. Eb) i
’ ; - ) so, further studies may reveal that the core-symmetric soli-
(2.169 and (2.169. Thus these three types of solitons are y y

. T, et > ton in Fig. 4a) is stable. Thus the final soliton state of the
unstable forp,q= 1, with their instability growth rate being evolution of a pulse fop=2 could essentially depend on the

of Fhe prder (fe). As we show_ed.in qu. IV, the ASZ, initial conditions. We also speculate that in this case, one
soliton is also unstable; however, its instability growth rate ISmay have a long-terrtyuas) periodic switching between the
of the orderO(1), i.e., much less than that of the other ;,eg similar to what one has in the two-component NLDC

solitons in this subcase. Note that the characteristic distanq%r sufficiently low energies, when both the symmetric and
of the soliton evolutior(such a distance is sometimes called o antisymmetric solitons O'f that model are stable.

a “soliton period” or dispersion lengjHor p,g>1 is of the
order O(1/e), and therefore the AS2 soliton can propagate
several soliton periods in the fiber before being destroyed by
the instability. In fact, a situation in which a weakly unstable  This research was supported in part by the Office of Naval
soliton could propagate a long distance before it decayedresearch, under Grant No. N00014-95-1-0323. Effort spon-
due to a weak instability, into another, stable soliton statesored in part by the Air Force Office of Scientific Research,
has been recently reportdd] for the model of a weakly Air Force Materials Command, USAF, under Contract No.
birefringent fiber. F49620-96-C-0031.
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g=const
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